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Blast waves can induce intracranial localized stresses at tissue interfaces that could be
responsible for damage in the neurons, glia, vasculature, and ventricular system [1,2]. To
characterize the mechanics by which blast waves can cause severe brain injuries, we are
conducting experimental measurements of the physics of intracranial interactions between skull
contents and blast waves, using both human head surrogates, and in-vivo animal models.

Learning Objectives

1. Establishing links between wearable blast sensor data and traumatic brain injury pathology.
2. Assessing exposure severity on biofidelic phantoms of human anatomy to develop safe  

exposure standards.
3. Understanding the mechanics of blast induced traumatic brain injury with biofidelic

phantoms and in-vivo animal models.
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Measurements using the first
generation Test Object have so far
confirmed that shear and normal
strains tend to concentrate in the
material interfaces between white
and gray matter, consistent with
pathology observed in cadaver
studies [5].

Figure 1. The ABC is a self-standing instrument composed by a blast chamber and a dissipation  
chamber. The blast chamber is sheltered by the structure on the right-hand-side, and the  
dissipation chamber is inside the sand berm on the left-hand-side.
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Figure 2. The Blast Chamber is composed by a Driver Section (1.5m deep steel cavity encased in
reinforced concrete) and a steel-made Test Section with cross-section 2m x 2m and length 5.5m.
Total length: 7m. The chamber protrudes through the dividing wall into the Dissipation Chamber.
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Figure 3. The Driver Section (left) is a concave acoustic mirror with two opposing logarithmic spirals  
as its generatrix (right). This geometry is such that a cylindrical blast originating at the common  
focus of the spirals will unfold into an almost flat blast (right, 5 stages of development) [3].

Propagating blast
1

3

2

4
5

Figure 4. The end edges of the test section are serrated to start fragmenting the blast and to  
reduce noise (left) [4]. The blast is discharged into the dissipation chamber (right). The interior of  
this chamber is covered by 30 cm of rubber mulch to absorb and dissipate the energy of the blast.

Figure 5. Dynamic measurements
with ultra-high-speed imaging while
the blast wave is crossing the test
object (blast range on the center of
the figure). The test object is a
phantom of the human head with a
layer of particles embedded in an
inner plane (bottom-right). The
embedded particles trace strain as
the detonation wave propagates
(center-top and zoomed-in view of
the edge of the detonation wave, top-
right). Particle Image Velocimetry
(PIV) is used to generate 2D vector
fields representing strain and strain-
rate (schematic of PIV process on the
left).

Figure 6. We use 4 ultrahigh-speed cameras Phantom V2512 with CMOS  
sensors of 1Mpixel, on-board memory of 144GB, maximum frame rate at  
maximum resolution of 25,700 fps, and more than 1,000,000 fps at reduced  
resolution. As shown, the cameras can be optically coupled and triggered in  
sequence to quadruple the available frame rate.

Figure 7. The current test object (1st generation) is a simplified  
dual-material phantom based on the dominant geometrical  
features of an axial cut of a real patient. The materials are two  
different grades of polyacrylamide, tailored to approximate the  
mechanical properties of white and gray matter.

Figure 8. Zoomed-in view of the right  
hemisphere of the frontal region of the 1st  

generation test object. This location was  
also the coup under blast-loading.

Figure 9. Calculations of maximum normal and shear strains using PIV. The vectors point  
in the local direction of strain and the contour maps give the magnitude. These results  
were obtained with a frontal blast-loading with an overpressure of 519kPa (75.2psi).

Figure 10. (a) and (b): establishing injury thresholds by measuring in vivo tissue deformation  
during blast injury and linking that to living bTBI ovine pathology; (c) and (d) validate phantom  
tissue models with in vivo experimental data to build a validated human head phantom for blast  
testing; (e) Isolate blast sensor data that correlates with a level of head phantom tissue  
deformation expected to cause injury based upon the in vivo data.
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